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Abstract
In this paper we use the pseudofermion dynamical theory (PDT) to study
the singular spectral features due to one-electron removal within the one-
dimensional Hubbard model. The PDT reveals that in the whole (k, ω)-
plane such features are of the power-law type and correspond to well defined
lines of three types: charge singular branch lines, spin singular branch lines
and border lines. One of our goals is the study of the momentum and
energy dependence of the distribution of the spectral weight in the vicinity
of such lines. We find that the charge and spin branch lines correspond to
the main tetracyanoquinodimethane (TCNQ) peak dispersions observed with
angle-resolved photoelectron spectroscopy in the quasi-1D organic conductor
tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Our expressions
refer to all values of the electronic density and on-site repulsion U . The weight
distribution in the vicinity of the singular spectral lines is fully controlled by
the overall pseudofermion phase shifts. Moreover, the shape of these lines is
determined by the bare-momentum dependence of the pseudofermion energy
dispersions.

1. Introduction

Early studies of quasi-one-dimensional (1D) compounds have focused on the various low-
energy phases which are not metallic and correspond to broken-symmetry states [1, 2].
Recently, the resolution of photoemission experiments has improved, and the normal state
of these compounds was found to display exotic spectral properties [3–5]. Study of the
microscopic mechanisms behind such properties has until now remained an interesting open
problem. Indeed, the finite-energy spectral dispersions recently observed in such metals by
angle-resolved photoelectron spectroscopy (ARPES) reveal significant discrepancies from the
conventional band-structure description [1, 3–5].
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There is some evidence that the 1D Hubbard model [6, 7] successfully describes the
transport properties and other exotic properties observed in some low-dimensional materials [8]
and that the electronic correlation effects described by the model could contain the finite-energy
microscopic mechanisms [3, 4] that control the above finite-energy spectral properties. Until
recently very little was known about the finite-energy spectral properties of that model for
finite values of the on-site repulsion U . This is in contrast to simpler models [9]. Indeed,
the usual techniques such as bosonization [10] and conformal-field theory [11–19] are very
useful for the study of the Tomanaga–Luttinger liquid (TLL) low-energy regimen but do not
apply at finite energy. Valuable qualitative information can be obtained for U → ∞ by use
of the method of [20, 21]. However, a quantitative description of the finite-energy spectral
properties of quasi-1D metals requires the solution of the problem for finite values of the on-
site Coulombian repulsion U . The method of [22] refers to features of the insulator phase.
For U ≈ 4t , where t is the transfer integral, there are numerical results for the one-electron
spectral function [23]. Unfortunately, the latter results provide very little information about the
microscopic mechanisms behind the finite-energy spectral properties.

Recently, the preliminary use of the finite-energy holon and spinon representation
introduced in [24] and further studied in [25] and the related pseudofermion description of
[26–29], revealed that most singular features of the one-electron-removal spectral function
correspond to separate charge and spin branch lines [3, 4]. Interestingly, the singular branch
lines associated with the one-electron-removal spectral function show quantitative agreement
with the tetracyanoquinodimethane (TCNQ) peak dispersions observed by ARPES in the
quasi-1D organic conductor tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) [3–5].
However, these studies provide no information about the momentum and energy dependence
of the spectral-weight distribution in the vicinity of the charge and spin branch lines. A
preliminary study of that dependence was recently presented in short form in [30]. Thereafter
a study of the same problem by means of the dynamical density matrix renormalization group
(DDMRG) method led to very similar results [31].

The main goal of this paper is the extension of the preliminary results presented in [30].
Our investigation relies on the pseudofermion dynamical theory (PDT) introduced in [26].
Such a theory provides the general finite-energy spectral-weight distributions for the metallic
phase of the model (1) for all values of energy and momentum. However, the amount
of one-electron-removal weight in regions away from the singular spectral lines is small.
Therefore, we limit our studies here to the vicinity of such lines. Our investigation focuses
on the one-electron-removal spectral function for all values of U and electronic density in the
vicinity of the singular charge and spin branch lines, which turn out to be the most important
spectral features for the description of the unusual TCNQ photoemission spectral lines. The
evaluation of the small spectral-weight distributions away from the singular spectral features
considered here requires the use of involved numerical calculations which will be carried out
elsewhere.

The pseudofermion description refers to the pseudofermion subspace (PS) [26]. The one-
electron-removal excitations studied in this paper are contained in such a Hilbert subspace. The
PDT refers to all energy scales but in the limit of low energy leads to the known conformal-
field-theory spectral-function and correlated-function expressions [27]. In [32] the PDT is
combined with the renormalization group for the study of the microscopic mechanisms behind
the phase diagram observed in the (TMTTF)2X and (TMTSF)2X series of quasi-1D organic
compounds. These studies are consistent with the latter phase diagram and explain why there
are no superconducting phases in TTF-TCNQ. The PDT used in this paper in the study of the
one-electron-removal spectral function of the 1D Hubbard model applies to related integrable
interacting problems [33] and therefore has wide applicability.
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The paper is organized as follows. In section 2 we introduce the one-electron-removal
spectral-function problem, the 1D Hubbard model, and some basic information about the
pseudofermion description. The introduction to the PDT and of the corresponding general
spectral-function expressions used in our investigation is the subject of section 3. Section 4 is
devoted to the the study of the weight distributions for one-electron removal. Moreover, we
investigate the limiting behaviour of the spectral function in the vicinity of the branch lines
both for U/t → 0 and U/t → ∞. Discussion of the relation of our theoretical predictions to
the TCNQ branch lines observed by angle-resolved photoelectron spectroscopy in the quasi-1D
organic compound TTF-TCNQ and concluding remarks are presented in section 5.

2. The problem and the pseudofermion description

2.1. The model and the one-electron-removal spectral functions

The 1D Hubbard model reads,

Ĥ = −t
∑

j,σ

[c†
j,σ c j+1,σ + h.c.] + U

∑

j

n̂ j,↑n̂ j,↓, (1)

where c†
j,σ and c j,σ are spin-projection σ = ↑,↓ electron operators at site j = 1, 2, . . . , Na

and n̂ j,σ = c†
j,σ c j,σ . The model (1) describes N↑ spin-up electrons and N↓ spin-down electrons

in a chain of Na sites. We denote the electronic number by N = N↑+N↓. The number of lattice
sites Na is even and very large. For simplicity, we use units such that both the lattice spacing
and the Planck constant are one. In these units the chain length L is such that L = Na . Our
results refer to periodic boundary conditions. We consider an electronic density n = n↑ + n↓
in the range 0 < n < 1 and a spin density m = n↑ − n↓ such that m → 0, where nσ = Nσ /L
and σ = ↑,↓. However, the calculations are performed for finite values of the spin density m.
For U/t > 0 the limit m → 0 is taken in the end of the calculation and leads to the correct
m = 0 results. The Fermi momentum is kF = πn/2 and the electronic charge reads −e.

The one-electron-removal spectral function B(k, ω) is given by,

B(k, ω) =
∑

σ

∑

f

|〈 f |ck,σ |GS〉|2δ
(
ω + E f − EGS

)
, ω < 0. (2)

Here ck,σ is an electron annihilation operator of momentum k and |GS〉 denotes the initial N-
electron ground state. The f summation runs over the N−1-electron excited energy eigenstates
and [E f − EGS] are the corresponding excitation energies. We use an extended momentum
scheme such that k ∈ (−∞,+∞) for the expression given in equation (2), yet it is a simple
exercise to obtain the corresponding spectral function expression for the first Brillouin zone.

2.2. The pseudofermion description

We now proceed to summarize the pseudofermion description of the excitation
spectrum [24–29]. It is closely related to the holons and spinons as defined in [24]. Here we use
the designations ±1/2 holons and ±1/2 spinons in terms of the η-spin and spin projections,
respectively. Such objects are well defined occupancy configurations of rotated electrons,
which are related to the original electrons by a unitary transformation [24]. The holons (and
spinons) have η-spin 1/2, with η-spin projection ±1/2, and spin zero (and spin 1/2, with spin
projection ±1/2, and no charge degrees of freedom), and are defined so that the rotated-electron
double occupation content equals the number of −1/2 holons. Starting from a given ground
state, the pseudofermion subspace (PS) is spanned by the excited energy eigenstates that can
be described in terms of occupancy configurations of pseudofermions, Yang holons and HL
spinons. The one- and two-electron excitations are contained in the PS [26, 27].
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The c0 pseudofermions have no spin and η-spin degrees of freedom. The cν
pseudofermions for ν > 0 (and sν pseudofermions), are composite objects having η-spin zero
(and spin zero) consisting of an equal number ν = 1, 2, . . . of −1/2 holons and +1/2 holons
(and −1/2 spinons and +1/2 spinons). In this paper we use the notation αν pseudofermion,
where α = c, s and ν = 0, 1, 2, . . . for the cν branches and ν = 1, 2, . . . for the sν
branches. The holons, c0 pseudofermions and composite cν pseudofermions are charged
objects. The different pseudofermion branches correspond to well known types of Bethe ansatz
(BA) excitations. For instance, in the PS the c0 pseudofermion occupancy configurations
describe the BA charge distribution of excitations of k and those of the cν pseudofermions
for ν > 0 (and sν pseudofermions) describe the BA charge string excitations of length ν (and
BA spin string excitations of length ν) [7].

The properties of the Yang holons and HL spinons follow from the invariance of the
three generators of the η-spin SU(2) algebra and three generators of the spin SU(2) algebra,
respectively, under the electron–rotated-electron unitary transformation. Indeed, the Yang
holons and HL spinons are also invariant under that transformation [24]. Therefore, the
operators that transform such objects have the same form in terms of electron and rotated-
electron creation and annihilation operators. For instance, the η-spin off-diagonal generator
that creates (and annihilates) an on-site electronic Cooper pair, equation (7) of [24], transforms
a +1/2 Yang holon (and a −1/2 Yang holon) into a −1/2 Yang holon (and a +1/2 Yang
holon). Furthermore, the spin off-diagonal generator that flips an on-site electronic up spin
(and down spin) onto an on-site electronic down spin (and up spin), equation (8) of [24], also
transforms a +1/2 HL spinon (and a −1/2 HL spinon) into a −1/2 HL spinon (and a +1/2
HL spinon). Thus, the occupancies of these objects involving Yang holons with different η-
spin projections +1/2 and −1/2 and/or HL spinons with different spin projections +1/2 and
−1/2 describe the energy eigenstates that are not contained the BA solution. The corresponding
energy eigenstates contained in that solution have precisely the same pseudofermion occupancy
configurations and the same Yang holon and HL spinon total numbers. However, all the
Yang holons and HL spinons of the latter states have the same η-spin and spin projections,
respectively. (For more information about Yang holons and HL spinons see section 2.4
of [24].)

We denote the number of αν pseudofermions by Nαν and the number of ±1/2 Yang
holons (α = c) and ±1/2 HL spinons (α = s) by Lα,±1/2. As mentioned above, besides
corresponding to well defined occupancies of the BA quantum numbers, the holons, spinons
and pseudofermions can also be expressed in terms of rotated electrons. For instance, Nc0

equals the number of rotated-electron singly occupied sites and [Na − Nc0] equals the number
of rotated-electron doubly occupied plus unoccupied sites. We call Mα,±1/2 the number of
±1/2 holons (α = c) and ±1/2 spinons (α = s). The latter number and that of ±1/2 Yang
holons (α = c) and ±1/2 HL spinons (α = s) are given by Mα,±1/2 = Lα,±1/2 + ∑∞

ν=1 νNαν

and Lα,±1/2 = Sα ∓ Sz
α , respectively. Here Sc (and Ss ) denotes the η-spin (and spin) of a state

and Sz
c (and Sz

s ) its η-spin (and spin) projection. (See equation (2) of [24].)
Within the pseudofermion, Yang holon and HL spinon description the energy and

momentum spectrum of the PS energy eigenstates has the form provided in equations (28)–
(34) of [26]. Such a spectrum is expressed in terms of the pseudofermion energy dispersions
defined in equations (C.15)–(C.18) of [24], pseudofermion bare-momentum distribution-
function deviations given in equations (13)–(17) of [26] and Yang holon (α = c) and HL
spinon (α = s) occupancies Lα,±1/2 = Sα ∓ Sz

α

Fortunately, for densities 0 < n < 1 and m → 0 only the charge c0 and spin s1
pseudofermion branches contribute to the one-electron-removal dominant processes considered
in this paper. Indeed, the one-electron-removal excitations have nearly no overlap with excited
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energy eigenstates with finite occupancies of −1/2 Yang holons, −1/2 HL spinons and cν and
sν ′ pseudofermions such that ν � 1 and ν ′ � 2, respectively.

An important point of the PDT is that the pseudofermions or pseudofermion holes created
under each ground-state–excited-state transition play the role of the scattering centres of
the theory [28, 29]. The wavefunctions of all pseudofermions and holes whose occupancy
configurations describe the excited states feel the creation of such objects through the
corresponding two-pseudofermion phase shifts. The spectral-weight distributions are fully
controlled by such two-pseudofermion quantities [26, 27]. The main technical problem
concerning the evaluation of the spectral-weight distributions by the PDT is that the overall
pseudofermion phase shifts resulting from the two-particle events have a functional character,
since their values are different for each excited state. The relation of the overall pseudofermion
phase shifts to the conventional phase shifts considered previously in the literature of the
1D Hubbard model was recently clarified in the second paper of [29]: the studies in that
paper reveal that the overall pseudofermion phase shift given below is a generalization of the
conventional phase shifts considered previously and that it is the most suitable for applications
to the finite-energy spectral properties studied here.

Most of our final expressions refer to densities 0 < n < 1 and m → 0. According
to the above general analysis, the charge c0 pseudofermion is a spin-less and η-spin-less
object that carries charge −e, and the spin s1 pseudofermion is a charge-less and spin-zero
two-spinon composite object. The αν = c0, s1 pseudofermions carry canonical-momentum
q̄ = q + Q�

αν(q)/L. Here q is the bare-momentum and Q�
αν(q)/2 is the overall scattering

phase shift given by [28]

Q�
αν(q)/2 =

∑

α′ν′=c0,s1

∑

q ′
π�αν,α′ν′ (q, q ′)	Nα′ν′(q ′); αν = c0, s1. (3)

On the right-hand side of this equation 	Nαν(q) = 	Nαν(q̄) is the bare-momentum
distribution function deviation 	Nαν (q) = Nαν (q) − N0

αν (q) and the elementary two-
pseudofermion phase shifts �αν,α′ν′(q, q ′) in units of π are such that +π�αν,α′ν′(q, q ′) (and
−π�αν,α′ν′(q, q ′)) gives the phase shift acquired by the bare-momentum qαν pseudofermion
or hole wavefunction when such an object is scattered by a bare-momentum q ′α′ν ′
pseudofermion (and α′ν ′ pseudofermion hole) created under a ground-state–excited-energy-
eigenstate transition [28]. The bare-momentum distribution-function deviations 	Nα′ν′ (q ′) of
equation (3) result from such a transition. In expression (3) these deviations refer to the c0
and s1 branches only and thus describe excited energy eigenstates generated by one-electron-
removal dominant processes. The corresponding general expression is given in equation (2)
of [28] and involves summations over all pseudofermion branches.

Although the αν pseudoparticles carry bare-momentum q [24, 25], one can also label the
corresponding αν pseudofermions by that bare-momentum. Indeed, the latter pseudofermions
carry canonical-momentum q̄ = q + Q�

αν(q)/L, but this latter expression provides an
one-to-one relation between the bare-momentum q and the canonical-momentum q̄ . The
pseudoparticles have residual-interaction energy terms which do not allow the expression of the
electronic spectral functions as a convolution of αν pseudoparticle spectral functions [26]. A
property which plays a central role in the PDT is that for the corresponding αν pseudofermions,
such residual-interaction energy terms are exactly cancelled by the overall scattering phase
shift Q�

αν(q)/2. By cancelling the residual interactions exactly, the associated canonical-
momentum shift Q�

αν(q)/L transfers the information recorded in these interactions over to
the pseudofermion canonical-momentum.

The overall αν pseudofermion or αν pseudofermion hole phase shift acquired under
a ground-state–excited-energy-eigenstate transition is given by Qαν(q)/2 = Q0

αν/2 +
Q�

αν(q)/2 [28, 29]. Here Q�
αν(q)/2 is provided in equation (3) and Q0

αν/2 = 0,±π/2 is
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an overall αν pseudoparticle or hole scatterer-less phase shift whose value is well defined
for each excitation subspace spanned by energy eigenstates with the same pseudofermion
numbers [26, 28]. It is such that under a ground-state–excited-energy-eigenstate transition the
αν pseudoparticle and hole discrete bare-momentum value q j is shifted by Q0

αν(q j)/L. The
overall phase shift Qαν(q)/2 leads to a corresponding canonical-momentum shift Qαν(q j)/L
for the discrete canonical-momentum values of the αν pseudofermions and holes. The structure
of the overall scattering phase shift (3) confirms that its value is different for each excited state.
Indeed, the bare-momentum distribution function deviation 	Nαν (q) = Nαν (q) − N0

αν (q)

has a well defined value for each energy eigenstate. In turn, for given values of the densities,
U/t , scatterer bare-momentum q and scattering-centre bare-momentum q ′ the value of the
two-pseudofermion phase shift π�αν,α′ν′ (q, q ′) is universal and equal for all excited states.
The density, interaction and momentum dependence of such a two-pseudofermion phase shift
is studied in detail in the first paper of [29].

Note that for each αν branch the continuum bare-momentum q corresponds to a set of
discrete bare-momentum values q j such that q j+1 − q j = 2π/L. Here j = 1, 2, . . . , N∗

αν and
the number N∗

αν = Nαν + Nh
αν is given in equations (B6)–(B8) and (B11) of [24]. Nαν and

Nh
αν denote the number of αν pseudofermions and αν pseudofermion holes, respectively. N∗

αν

equals the number of sites of the effective αν lattice [28], which plays an important role in the
pseudoparticle and pseudofermion descriptions. For the αν = c0, s1 branches the number Nh

αν

reads

Nh
c0 = [Na − Nc0]; Nh

s1 = Nc0 − 2
∞∑

ν′=1

Nsν′ , (4)

where in our case Nh
s1 = Nc0 − 2Ns1. We used equation (B.11) of [24] to derive the expression

given in equation (4) for Nh
s1, such that Nh

s1 = 0 for the m → 0 initial ground state.
The pseudofermion occupancy configurations of the effective αν lattices correspond to

well defined occupancy configurations of the original lattice by rotated electrons, which
are related to electrons by a unitary transformation [24, 25]. However, while in terms of
the electrons the quantum problem is strongly interacting and non-perturbative, in terms
of pseudofermions there are only two-particle zero-momentum forward-scattering events
associated with the overall scattering phase-shift functional (3).

As the quasi-particles of Fermi liquid theory have momentum-dependent energy
dispersions, the charge and spin pseudofermions also have energy bands εc0(q) and εs1(q)

such that |q| � π and |q| � kF, respectively. These energy dispersions are plotted in
figures 6 and 7 of [25]. (As mentioned above, they are defined by equations (C.15) and (C.16)
of [24], respectively.) Also the group velocity vαν(q) = ∂εαν(q)/∂q and the Fermi-point
velocity vαν ≡ vαν(q0

Fαν) appear in the spectral-function expressions. Here q0
Fc0 = 2kF and

q0
Fs1 = kF↓ = kF as m → 0 define the ground-state Fermi points [24, 26]. In section 4 we

confirm that the pseudofermion energy bands fully determine the shape of the one-electron-
removal spectral function in the proximity of the branch lines studied in that section. In the
ground state the s1 pseudofermion band is filled and the c0 pseudofermions occupy the bare-
momentum domain 0 � |q| � 2kF (leaving 2kF < |q| � π empty).

3. The general spectral-function expressions used in our study

3.1. PDT dominant processes

The one-electron-removal problem studied in this paper involves only the PDT dominant
processes. The dominant (and non-dominant) processes correspond to the i = 0 (and i > 0)
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terms on the right-hand side of the general spectral-function expression given in equation (41)
of the first paper of [26]. Furthermore, only such dominant processes contribute to the
one-electron-removal spectral-function power-law expressions obtained in this paper. The
initial ground state and excited energy eigenstates of equation (2) that are associated
with the one-electron-removal dominant processes can be expressed in terms of occupancy
configurations of the c0 and s1 pseudofermions. For one-electron removal, the dominant
processes involve creation of one pseudofermion hole in both the bands εc0(q) and εs1(q). In
addition to small-momentum and low-energy c0 and s1 pseudofermion particle–hole processes,
which conserve the pseudofermion numbers, the dominant processes involve creation of one
c0 pseudofermion hole and one s1 pseudofermion hole at bare-momentum values q and q ′,
respectively. Thus, the excited energy eigenstates generated by these one-electron-removal
dominant processes belong to subspaces whose c0 pseudofermion and s1 pseudofermion hole
number ground-state deviations are given by

	Nh
c0 = −	Nc0 = 1; 	Nh

s1 = 1. (5)

Moreover, as discussed in sections 4 and 5, the main one-electron-removal spectral-function
singular features are associated with the charge c0 and spin s1 pseudofermion branch lines.

The domain of the (k, ω)-plane whose spectral weight is generated by one-electron-
removal dominant processes is contained in the region of negative ω/t values of figure 1 of [30].
(That figure uses the extended momentum scheme also used here.) Such a domain is limited
above by the s line for momentum values between k = 0 and k = kF, the c′′ line from k = kF

until that line reaches the c′ line at k = 2kF, the c′ line from the momentum k = 2kF until
k = 3kF and the s line between the momentum values k = 3kF and k = 5kF. The same domain
is limited below by the lowest line of the figure.

When both the bare-momentum values q and q ′ of the two created pseudofermion holes
are away from the Fermi points and such that vc0(q) 
= vs1(q ′), the corresponding dominant
processes do not lead to singular spectral features and generate the one-electron-removal
spectral weight for (k, ω)-plane regions away from these features. Since the latter weight is
small, in this paper we do not study its intensity distribution in the (k, ω)-plane. A first type of
singular feature corresponds to lines generated by such processes where both created objects
move with the same group velocity, vc0(q) = vs1(q ′), and the spectral feature corresponds to
a border line, ω = ωBL(k) = [±εc0(q) − ε1s(q ′)]δvc0(q),vs1(q ′), in the (k, ω)-plane. In this case
the spectral function reads

B(k, ω) ≈ CBL(k)(ω − ωBL(k))−1/2, (6)

in the vicinity and just above such a line. However, as discussed in section 5, for the TCNQ-
related spectral features the only existing border line for the density of the TCNQ stacks of
molecules of TTF-TCNQ leads to a weak feature mentioned in section 5, which we do not
study in section 4.

The second type of spectral feature corresponds to the branch lines studied in this paper,
such that either q or q ′ equals one of the corresponding pseudofermion branch Fermi points.
Thus, such features are generated by processes where a αν pseudofermion hole is created for
all the available values of bare-momentum q and a second α′ν ′ pseudofermion hole is created
at one of its two Fermi points ±q0

Fα′ν′ , where αν = c0, s1 and α′ν ′ = s1, c0, respectively.
For densities 0 < n < 1 and 0 < m < n the αν = c0, s1 pseudofermion phase-shift-

related functional

2	ι
αν =

(
ι	N0,F

αν,ι + Qαν(ιq0
Fαν)

2π

)2 =
(
ι	NF

αν,ι + Q�
αν(ιq

0
Fαν)

2π

)2
, (7)

where ι = ±1 and αν = c0, s1, controls the exponents of the spectral-function power-
law expressions in the vicinity of the charge and spin branch lines [26]. Here 	NF

αν,ι is the
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deviation in the number of αν = c0, s1 pseudofermions at the Fermi points and Q�(ιq0
Fαν)/2

and Qαν(ιq0
Fαν)/2 = Q0

αν/2 + Q�(ιq0
Fαν)/2 are the overall scattering and the overall phase

shifts, respectively, of αν pseudofermion or hole scatterers at the bare-momentum Fermi
values ιq0

Fαν = ±q0
Fαν . Note that the deviation 	NF

αν,ι = ι	N0,F
αν,ι + Q0

αν/2π involves both
contributions from the scatterer-less overall phase shift Q0

αν/2 and the number deviation 	N0,F
αν,ι

generated by the creation or annihilation pseudofermion processes at the Fermi points. We also
consider the αν = c0, s1 current number deviation 2	J F

αν = 	NF
αν,+1 − 	NF

αν,−1 .
For excited energy eigenstates generated by processes involving pseudofermion

occupancies in the vicinity of the c0 or s1 Fermi points, the functional (7) and the corresponding
branch-line exponent expressions involve the following Fermi-point two-pseudofermion phase-
shift parameters:

ξ
j
ανα′ν′ = δα,α′δν,ν′ +

∑

ι=±1

(ι j)�αν,α′ν′(q0
Fαν, ιq

0
Fα′ν′); j = 0, 1, (8)

where αν = c0, s1 and α′ν ′ = c0, s1. In the limit m → 0, these parameters are given by
ξ 0

c0c0 = 1/ξ0, ξ 0
c0s1 = 0, ξ 0

s1c0 = −1/
√

2, ξ 0
s1s1 = √

2, ξ 1
c0c0 = ξ0, ξ 1

c0s1 = ξ0/2, ξ 1
s1c0 = 0

and ξ 1
s1s1 = 1/

√
2. Here ξ0 is the usual TTL parameter such that ξ0 → √

2 and ξ0 → 1 as
U/t → 0 and U/t → ∞, respectively.

We emphasize that the limits m → 0, U/t → 0 and U/t → 0, m → 0 do not commute
and lead to different values for the parameters (8): while for m → 0, U/t → 0 one finds
ξ 0

c0c0 → 1/
√

2, ξ 0
c0s1 → 0, ξ 0

s1c0 → −1/
√

2, ξ 0
s1s1 → √

2, ξ 1
c0c0 → √

2, ξ 1
c0s1 → 1/

√
2,

ξ 1
s1c0 → 0 and ξ 1

s1s1 → 1/
√

2, for U/t → 0, m → 0 the result is ξ
j

c0c0 → 1, ξ
j

c0s1 → 0,

ξ
j

s1c0 → 0 and ξ
j

s1s1 → 1 for both j = 0 and j = 1. Also the phase shifts �s1,c0(kF↓, q)

and �s1,s1(kF↓, q) have different values in the limits m → 0, U/t → 0 and U/t → 0,
m → 0, respectively. Therefore, for some excitations the spin functionals 2	−1

s1 and 2	+1
s1

have different values in these two limits. For such excitations we provide below the spectral-
function exponent associated with the limit U/t → 0, m → 0, which is that which leads to the
correct U/t = 0 spectral-function behaviour for m = 0. This can be confirmed by studying
the limit of the corresponding exponents as U/t → 0 for m > 0.

3.2. General expressions in the vicinity of the pseudofermion branch lines

Here and in section 4 we label the αν pseudofermions by their bare-momentum q . The
momentum values k of the one-electron-removal αν branch-line points (k, lωαν(k)) are
determined through the bare-momentum value q of the created αν pseudofermion or hole by
the following parametric equations:

k = −[k0 − q]; q = [k + k0]; ωαν = −εαν(q);
k0 = 4kF	J F

c0 + 2kF↓	J F
s1.

(9)

The one-electron-removal spectral function (2) has in the vicinity of the αν branch lines the
following power-law expression for finite values of the energy ω < 0 such that −(ω + ωαν(q))

is small and positive and ωαν(q) 
= 0 where the point (k,−ωαν(q)) belongs to the branch
line [26]:

B(k, ω) ≈ Cαν(q)
(−[ω + ωαν(q)]

4π
√

vc0vs1

)ζαν(q); ζαν(q) > −1

= δ
(
ω + ωαν(q)

)
; ζαν(q) = −1; αν = c0, s1.

(10)

Here the first expression is the leading-order term of a power-law expansion in the small
energy deviation −[ω + ωαν(k)] relative to the branch-line energy whose exponent ζαν(k) and
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pre-factor Cαν(k) have the following general form:

ζαν(q) = −1 + ζ0(q);
ζ0(q) = 2	+1

c0 (q) + 2	−1
c0 (q) + 2	+1

s1 (q) + 2	−1
s1 (q) � 0;

Cαν(q) = sgn (q)1

2π

∫ Iαν (q)

vαν (q)

− sgn (q)1
vs1

dz
F0(z)

[1 − zvαν(q)]ζ0(q)
� 0; vs1 � |vαν(q)|

Iαν(q)

= sgn (q)1

2π

∫ sgn (q)1
vs1

− sgn (q)1
vs1

dz
F0(z)

[1 − zvαν(q)]ζ0(q)
� 0; vs1 � |vαν(q)|

Iαν(q)
.

(11)

In these expressions Iαν(q) = [1 + [ω + ωαν(q)]/�] and the small positive energy
� corresponds to the energy range of the small-momentum and low-energy c0 and s1
pseudofermion particle–hole elementary processes. In the numerical evaluation of the spectral-
function expressions the value of � is determined by the normalization procedure associated
with imposing the k and ω spectral-function sum rules [26]. Moreover, in the above equations
F0(z) is an even function of z which for the branch-line excitations considered in this paper
can have two alternative expressions. If the two charge parameters 2	±

c0(q) and two spin
parameters 2	±1

s1 (q) given in equation (7) have finite values it is given by

F0(z) = 2D0

√
vs1

vc0

∫ 1

0
dx

∫ +1

−1
dy

∏

ι′=±1

�
(

1 − x + sgn (z)ι′
[
vs1|z| − vs1

vc0
y
])

�(2	ι′
s1)

×
�

(
x + sgn (z)ι′y

)

�(2	ι′
c0)

(√
vc0

vs1

[
1 − x + sgn (z)ι′

[
vs1|z| − vs1

vc0
y
]])2	ι

s1−1

×
(√

vs1

vc0

[
x + sgn (z)ι′y

])2	ι′
c0−1

, (12)

where

D0 = [Na]−2+ζ0(q)
∏

αν=c0,s1

A(0,0)
αν , (13)

and A(0,0)
αν is the αν pseudofermion lowest-peak weight functional

A(0,0)
αν =

( 1

N∗
αν

)2[N 0
αν+	Nαν ] ∏

q j ∈F
sin2 Qαν(q j)

2

N∗
αν−1∏

j=1

(
sin

π j

N∗
αν

)2(N∗
αν− j)

×
∏

qi ∈F

∏

q j ∈F
θ(q j − qi) sin2 Qαν(q j)/2 − Qαν(qi)/2 + π( j − i)

N∗
αν

×
∏

qi ∈F

∏

q j ∈F
sin−2 π( j − i) + Qαν(q j)/2

N∗
αν

; αν = c0, s1. (14)

Here θ(x) = 1 for x > 0, θ(x) = 0 for x � 0, N∗
αν is the number of αν-band discrete bare-

momentum values q j , j = 1, 2, . . . , N∗
αν of the excited states such that N∗

c0 = Na and N∗
s1 =

N0
c0−N0

s1+	Nc0−	Ns1, Qαν(q j)/2 is the overall phase shift Qαν(q)/2 = Q0
αν/2+Q�

αν(q)/2
associated with the overall scattering phase shift Q�

αν(q)/2, equation (3), and q j ∈ F
corresponds to the set of discrete bare-momentum values in the range qFαν,−1 � q j � qFαν,+1

where qFαν,ι = ιq0
Fαν + 	qFαν,ι and 	qFαν,ι = ι[2π/L]	NF

αν,ι.
The weight D0, equation (13), is independent of Na . Indeed, a suitable handling of

expression (14) reveals that the factor [Na]−2+ζ0(q) exactly cancels the Na dependence of A(0,0)
αν .

Expression (12) is that provided for F0(z) in [26]. It is valid for the density ranges 0 < n < 1
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and 0 < m < n such that the above four parameters are always finite. However, for the m → 0
limit considered in this paper it occurs for some excitations that one of the two spin parameters
2	±1

s1 (q) vanishes. If one considers that 2	−ι
s1 = 0 and the remaining three parameters are

finite the function F0(z) reads instead

F0(z) = 2D0
vs1

vc0

∫ +1

−1
dy

�
(
ι
[
sgn (z)y − vc0

(
z − ι

vs1

)])
�

(
ι[zvc0 − sgn (z)y]

)

�(2	ι
s1)

×
(√

vc0

vs1
2ι

[
z − sgn (z)

y

vc0

]
vᾱν̄

)2	ῑ
ᾱν̄−1

×
∏

ι′=±1

�
(

1 + sgn (z)
[
ι′ + ι vs1

vc0

]
y − ιvs1z

)

�(2	ι′
c0)

×
(√

vs1

vc0

[
1 + sgn (z)

[
ι′ + ι

vs1

vc0

]
y − ιvs1z

])2	ι′
c0−1

. (15)

A full quantitative study of the pre-factor Cαν(q) whose general expression is defined
by equations (11)–(15) involves the numerical derivation of the lowest-peak weight A(0,0)

αν ,
equation (14), for each excited energy eigenstate contributing to the one-electron spectral
weight. Such a quantitative study, which requires involved numerical calculations, is beyond
the goals of this paper and will be carried out elsewhere. However, the general Cαν(q)

expression defined above is useful for our studies, once it can be used to extract information
about the behaviour of the pre-factor Cαν(q) as U/t → 0 and find out whether for finite values
of U/t that function is vanishing or finite and also what its relative value for different branch
lines is.

A αν branch line whose exponent ζαν(q) is negative for a given domain of k = −[k0 − q]
values is called a singular branch line. In this case the weight distribution shows a singular
behaviour at the branch line, and we expect that the spectral peaks will be observed in a real
experiment. This was confirmed for the present case of one-electron removal, as discussed in
section 5. On the other hand, when for a (k, ω)-plane region in the vicinity of the branch line
and contained inside the one-electron-removal dominant-weight domain of figure 1 of [30] the
exponent (11) is such that 0 < ζαν(q) < 1, the spectral feature refers to an edge branch
line. Finally, 0 < ζαν(q) < 1 for regions away from that domain and ζαν(q) > 1 for
any (k, ω)-plane region are in general a sign of a near absence of spectral weight. For one-
electron removal, and thus ω < 0, the singular and edge branch lines are represented in figure 1
of [30] by solid and dashed lines, respectively. The dashed–dotted lines of that figure are either
limiting lines for the domain of weight generated by dominant processes or lines associated
with exponents larger than one. The lowest limiting line of the figure corresponds to a singular
but weak spectral feature called a border line, as mentioned in section 5.

The general branch-line spectral-function expressions defined by equations (10) and (11)
are not valid in the vicinity of the low-energy branch-line end points. These end points
correspond to values of k and ω such that ω ≈ ιvαν(k + kF

0 ) where,

kF
0 = k0 − ιq0

Fαν; αν = c0, s1, ι = ±1,

and k0 is the momentum given in equation (9). In this low-energy limit the physics is that of the
so-called low-energy TLL regime, where bosonization [10] and conformal-field theory [11–19]
are applicable.
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3.3. Limiting low-energy behaviour near the branch-line end points

The αν = c0, s1 branch lines also exist for small positive values of −ω. Such a regimen
corresponds to the above-mentioned values of k and ω such that ω ≈ ιvαν(k + kF

0 ). In this
case the expression (10) does not apply and instead the general PDT leads to the following
one-electron-removal spectral-function expression [26]:

B(k, ω) ∝
(−[ω + ιvαν(k + kF

0 )]
4π

√
vc0vs1

)−1+ζ 0
αν,ι; ζ 0

αν,ι = ζ 0
αν − 2	−ι

αν � 0, (16)

where αν = c0, s1, ι = ±1. The low-energy spectral function expression given in
equation (16) refers in general to the proximity of a αν = c0, s1 branch-line end point. In
turn, the finite-energy expression (10) applies in the vicinity of the αν = c0, s1 branch lines
when the αν = c0, s1 branch-line group velocity vαν(q) is such that vαν(q) 
= ιvαν . As
the value of vαν(q) approaches that of the Fermi point velocities ±vαν , vαν(q) → ιvαν , the
spectral function k and ω values reach the vicinity of a branch-line end point and thus the
spectral function is given by expression (16) instead of (10).

Interestingly, for ω ≈ ιvαν(k − lkF
0 ) in the momentum expression (9), the validity of the

spectral-function expression given in equation (16) corresponds to the TLL regime. Therefore,
in this limit the above exponent −1 + ζ 0

αν,ι provided by the general PDT of [26] must equal
that corresponding to the low-energy universal TLL expressions. Indeed, it is straightforward
to show that the general exponent −1 + ζ 0

αν,ι of expression (16) is identical to that given in
equation (5.7) of [16]. When applied to specific spectral functions such that ω < 0, expression
(16) provides the universal and well known low-energy TLL behaviour for the 1D Hubbard
model [11–19], the Tomonaga–Luttinger model [34–36] and many other models whose low-
energy physics corresponds to the same universality class. When −1 + ζ 0

αν,ι < 0, such an
expression refers to a linear singular spectral feature.

There is a cross-over region between the finite-energy and low-energy regimens
corresponding to the spectral-function expressions (10) and (16), respectively. The momentum
and energy width corresponding to such a crossover regimen is very small and is fully
controlled by the value of |vαν(q) − ιvαν |. The low-energy TLL behaviour emerges when
|vαν(q) − ιvαν | ≈ |aαν(q0

Fαν)(k + kF
0 )|, where aαν(q) = ∂vαν(q)/∂q for αν = c0, s1. As the

value of the branch-line bare-momentum q of equation (9) approaches ιq0
Fαν the behaviour (16)

is reached. Importantly, for smaller values of |aαν(q0
Fαν)| the value of |vαν(q)−ιvαν | can remain

small for larger values of |k + kF
0 | and thus of ω ≈ ιvαν(k + kF

0 ). It follows that the momentum
and energy widths of the (k, ω)-plane region in the vicinity of the point (−kF

0 , 0) where the
TLL liquid behaviour is valid increase for decreasing values of |aαν(q0

Fαν)|, provided that vαν

is finite. For instance, in the limit of zero spin density, m → 0, the value of |as1(q)| is small in
two relatively large q regions in the vicinity of q = −kF and q = +kF, respectively, and thus
the domain of the corresponding spin s1 branch lines where the TLL expression (16) is valid
increases in that limit. (We recall that the general exponent (11) cannot be obtained by the TLL
low-energy methods.)

When the above branch-line end point (−kF
0 , 0) is reached through low-energy lines other

than the above branch lines the spectral-function expression is different from (16). Examples
of such points are the points (k = kF, ω = 0) and (k = 3kF, ω = 0) shown in figure 1
of [30]. The general theory provides spectral-function expressions that are valid when these
points are approached by lines that are contained in the finite-weight regions and do not cross
the αν branch lines ending at the same points. The velocity v = 1/z = (ω/(k + kF

0 ) plays an
important role in these expressions. Indeed, following the studies of [26], in the proximity of
the point (−kF

0 , 0) but for values of k and ω such that ω ≈ v(k + kF
0 ), where v 
= ±vs1,±vc0

and depending on the specific point, the z = 1/v domain is bounded by two of the four values
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−1/vc0, −1/vs1, 1/vs1, and 1/vc0, the momentum and energy weight-distribution dependence
has the following general expression for finite values of U/t :

B(k, ω) ≈ F0(1/v)

4π
√

vc0vs1

( −ω

4π
√

vc0vs1

)−2+ζ0; −2 + ζ0 > −1, (17)

where F0(z) is the function defined in equations (12) and (15) and ζ0 is the above functional
ζ0 = 2	+1

c0 + 2	−1
c0 + 2	+1

s1 + 2	−1
s1 . Here 2	ι

αν is the functional of equation (7) for the
deviations of the bare-momentum distribution function associated with the excitations that
control the spectral-weight distribution in the vicinity of the point (−kF

0 , 0).
Since the power-law spectral-function expressions (16) and (17) refer to the vicinity of

low-energy lines and isolated zero-energy points in the (k, ω)-plane, respectively, that are not
of interest for the low-energy phase of the organic compound TTF-TCNQ, here we limit our
study to the more complex problem of the finite-energy branch-line spectral weight. Indeed,
the low-energy phase of TTF-TCNQ is not metallic and refers to broken-symmetry states [1, 2],
whereas the branch-line spectral features given by equation (10) refer to finite-energy values
which correspond to the unusual metallic state of that organic compound.

4. The one-electron-removal branch lines

In this section we use the general branch-line expressions and associated quantities considered
above in the study of the one-electron-removal finite-energy spectral-function singular and edge
branch lines. The ground-state–excited-energy-eigenstate transitions to the subspace whose
pseudofermion number deviations are given in equation (5), generate several αν pseudofermion
branch lines whose location in the (k, ω)-plane is shown in figure 1 of [30] for ω < 0. The
s ≡ s1 branch line shown in the figure, which connects the points (k = −kF, ω = 0) and
(k = kF, ω = 0), is generated by creating the c0 pseudofermion hole at one of its Fermi
points, and the s1 pseudofermion hole for bare-momentum values in the domain defined by
the inequality |q| � kF. We emphasize that in addition to creation of a c0 pseudofermion
hole at q = 2kF (and q = −2kF), this excitation includes a collective bare-momentum shift
Q0

c0/L = +π/L (and Q0
c0/L = −π/L) for the whole c0 pseudofermion Fermi sea.

By considering the same processes, plus transferring a c0 pseudofermion from the Fermi
point −ι′2kF to the Fermi point ι′2kF, two other s1 branch lines are generated, which connect
the points (k = −ι′3kF, ω = 0) and (k = −ι′5kF, ω = 0) where ι′ = ±1. The ι′ = −1
line is labelled by s in figure 1 of [30], where it appears for ω � 0. On the other hand, there
are four c0 pseudofermion branches lines which connect the points (k = −3kF, ω = 0) and
(k = kF, ω = 0), (k = −kF, ω = 0) and (k = 3kF, ω = 0), (k = −5kF, ω = 0) and
(k = −kF, ω = 0) and (k = kF, ω = 0) and (k = 5kF, ω = 0). The first, second and fourth of
these lines are labelled by c, c′ and c′′, respectively, in figure 1 of [30], where their k > 0 parts
are shown for ω � 0. Below we study the spectral-weight distribution in the vicinity of these
seven one-electron-removal branch lines.

We start by evaluating the weight distribution corresponding to the first s1 pseudofermion
branch line mentioned above. The specific form of the general expressions (9) for the points
(k,−ωs1(k)) belonging to the s1 pseudofermion branch line in the m → 0 limit corresponds
to k0 = 0 and reads

q = k; −ωs1(q) = εs1(q). (18)

Here εs1(q) is the energy dispersion given in equation (C.16) of [24] and plotted for m → 0 in
figure 7 of [25]. (The energy dispersions εc0(q) and εs1(q) appearing in other expressions of
this section are those defined in equations (C.15) and (C.16) of [24] and plotted in figures 6 and
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7 of [25], respectively.) We recall that the k > 0 part of this s1 pseudofermion singular branch
line is labelled by s in figure 1 of [30], where it connects the points (k = 0, ω = εs1(0)) and
(k = kF, ω = 0). In this case the general spectral-function expression (10) applies provided
that the specific expression associated with the excitations around the point (k,−ωs1(k)) of the
functional 2	ι

αν defined in equation (7) is used. This expression is a function of k = q and
corresponds to the m → 0 limit of the following quantity:

2	ι
αν(q) =

{
−ι

ξ 0
ανc0

2
− �αν,s1(ιq

0
Fαν, q)

}2

; αν = c0, s1. (19)

Here the value of the two-pseudofermion phase shift �αν,s1 and that of the two-pseudofermion
phase shifts �αν,α′ν′ appearing in other expressions of this section is uniquely defined in
terms of the solution of a system of integral equations [26] and the general expression for
the parameter ξ 0

ανc0 is provided in equation (8).
Direct use of expression (10) in the m → 0 limit, leads to the following expression for the

one-electron removal spectral function:

B(k, ω) ≈ Cs1(q)

(−[ω + ωs1(q)]
4π

√
vc0vs1

)ζs1(q)

; ζs1(q) > −1

= δ
(
ω + ωs1(q)

); ζs1(q) = −1, (20)

which corresponds to energy values just below the branch line for ζs1(q) > −1 and at that line
for ζs1(q) = −1 and to bare-momentum and momentum values in the range −kF < q < kF and
−kF < k < kF, respectively. The pre-factor Cs1(q) given in equation (11) is finite for all values
of the q domain, except in the vicinity of the branch-line end points, where vs1(q) ≈ ±vs1 and
provided that ζs1(q) > −1 the spectral function is instead of the form given in equation (16).
When ζs1(q) = −1 the second spectral-function expression of equation (20) applies. It refers
to the whole branch-line momentum domain.

As the spin density m approaches zero, we find the following exponent expression valid
for all values of U/t and electronic density n:

ζs1(q) = −1 +
∑

αν=c0,s1

∑

ι=±1

{
ξ 0
ανc0

2
+ ι�αν,s1(ιq

0
Fαν, q)

}2

= 1 +
∑

ι=±1

{
1

2ξ0
+ ι�c0,s1(ι2kF, q)

}2

+
∑

ι=±1

{
− 1

2
√

2
+ ι�s1,s1(ιkF, q)

}2

, (21)

where the second expression was obtained by taking the limit m → 0 in the first-expression
quantities and ξ0 is the usual TTF parameter. The dependence of the exponent (21) on
the momentum k is obtained by combining equations (18) and (21). The exponent ζs1 of
equation (21) is negative for all values of momentum and is plotted in figure 1 as a function
of the momentum k for k > 0, several values of U/t and electronic density n = 0.59. So
the corresponding spectral-function expression (20) describes a singular branch line. The
exponent ζs of the figure is the exponent (21) for momentum values 0 < k < kF, whereas
for kF < k < 3kF ζs it corresponds to a one-electron addition exponent considered in [30].

While for momentum values 0 < k < kF one reaches the same value for the exponent
plotted in figure 1 in the limits m → 0, U/t → 0 and U/t → 0, m → 0, that value is different
for kF < k < 3kF. In this paper we always consider the limit U/t → 0, m → 0, whereas the
studies of [30] considered the limit m → 0, U/t → 0. This justifies the different values of that
exponent for kF < k < 3kF and U = 0 given in figure 1 and in figure 2 of [30], respectively,
which otherwise correspond to the same exponent values. The U/t → 0 and U/t → ∞
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Figure 1. Momentum dependence of the exponents associated with the one-electron-removal spin
s ≡ s1 branch line of figure 1 of [30] for 0 < k < kF and one-electron addition spin branch line of
the same figure for kF < k < 3kF. For the one-electron removal case considered here that exponent
is given in equation (21). (In the figure both these exponents are called ζs .) We note that for U > 0
and in the one-electron-removal small-momentum domain in the vicinity of the branch-line end
point k = kF, where vs1(q) ≈ vs1, the exponent plotted here does not apply, since the spectral
function is instead of the form given in equation (16).

limiting values of the exponent (21) and other exponents obtained below are further discussed
at the end of this section.

Similar results are obtained for the other two one-electron-removal s1 branch lines, whose
exponent was not studied in [30]. We call them s1, ι′ branch lines where ι′ = ±1. Here
and in the expressions provided below we use the indices ι′ = ±1 and ι′′ = ±1 to denote
contributions from processes which involve c0 and s1 pseudofermions, respectively, created or
annihilated at the m → 0 Fermi points ι′2kF = ±2kF and ι′′kF = ±kF, respectively. For the
s1, ι′ branch lines, the index ι′ refers to a c0 pseudofermion particle–hole process such that a
c0 pseudofermion is annihilated at q = −ι′2kF and created at q = ι′2kF, where ι′ = ±1. The
specific form of the general expressions (9) for the points (k, ωs1,ι′(k)) belonging to the s1, ι′
branch line in the m → 0 limit, corresponds to k0 = ι′4kF and is given by

q = k + ι′4kF; ωs1,ι′ (q) = −εs1(q). (22)

The s1,−1 pseudofermion singular branch line is labelled by s in figure 1 of [30], where for
ω/t < 0 it connects the points (k = 3kF, ω = 0) and (k = 5kF, ω = 0). In this case the value
of the functional (7) is a function of k = q + ι′4kF given by the m → 0 limit of the parameter

2	ι
αν(q) =

{
−ι

ξ 0
ανc0

2
+ ι′ξ 1

ανc0 − �αν,s1(ιq
0
Fαν, q)

}2; αν = c0, s1. (23)

Use of the general expression (10) in the m → 0 limit, leads to the following expression for
the one-electron-removal spectral function:
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B(k, ω) ≈ Cs1,ι′ (q)

(−[ω + ωs1,ι′(q)]
4π

√
vc0vs1

)ζs1,ι′ (q)

. (24)

This expression corresponds to energy values just below the branch line and to bare-momentum
values in the range −kF < q < kF and momentum values in the domains −5kF < k < −3kF

and 3kF < k < 5kF for ι′ = 1 and ι′ = −1, respectively. In the m → 0 limit, we find the
following exponent expression valid for all values of U/t and electronic density n:

ζs,ι′(q) = −1 +
∑

αν=c0,s1

∑

ι=±1

{
ξ 0
ανc0

2
− ιι′ξ 1

αν,c0 + ι�αν,s1(ιq
0
Fαν, q)

}2

= 1 +
∑

ι=±1

{
1

2ξ0
− ιι′ξ0 + ι�c0,s1(ι2kF, q)

}2

+
∑

ι=±1

{
− 1

2
√

2
+ ι�s1,s1(ιkF, q)

}2

. (25)

The dependence of the exponent (25) on the momentum k is obtained by combining
equations (22) and (25). For most of the parameter space and bare-momentum values, this
exponent is larger than one and thus the spectral-function expression (24) does not describe
a branch line. Consistently, for finite values of U/t the pre-factor Cs1,ι′(q) of equation (24)
has smaller values than those of the pre-factor Cs1(q) appearing in expression (20). However,
for large values of U/t and bare-momentum values in the vicinity of ι′kF such an exponent
corresponds to a branch line, as it reaches values smaller than one. We recall that for small
domains in the vicinity of the end points k = ±3kF and k = ±5kF the spectral function is not
of the form (24), but instead is of the general form given in equation (16).

Equivalent results are obtained for the four c0, ι′, ι′′ branch lines, where ι′, ι′′ = ±1. In this
case, the specific form of the general expressions (9) for the points (k, ωc0,ι′,ι′′ (k)) belonging to
the c0, ι′, ι′′ branch lines in the m → 0 limit, corresponds to k0 = ι′2kF − ι′′kF and reads

q = k + ι′2kF − ι′′kF; ωc0,ι′,ι′′(q) = −εc0(q). (26)

The c0,+1,+1 branch line, the c0,−1,−1 branch line and the c0,−1,+1 branch line are
labelled c, c′ and c′′ in figure 1 of [30], respectively, where they are represented for k > 0 and
ω � 0. In this case the value of the functional (7) is given by the m → 0 limit of the following
parameter:

2	ι
αν(q) =

{
ι′
ξ 1
ανc0

2
− ι

ξ 0
ανs1

2
− ι′′

ξ 1
ανs1

2
− �αν,c0(ιq

0
Fαν, q)

}2

, (27)

where αν = c0, s1.
The dependence of this quantity on the momentum k is obtained by combining

equations (26) and (27). From use of the general expression (10) in the m → 0 limit, we
find the following expression for the one-electron-removal spectral function:

B(k, ω) ≈ Cc0,ι′,ι′′ (q)

(−[ω + ωc0,ι′,ι′′(q)]
4π

√
vc0vs1

)ζc0,ι′ ,ι′′ (q)

. (28)

This expression corresponds to energy values just below the branch lines. In this expression
and in the exponent expressions provided below, the bare-momentum values are in the range
−2kF < q < 2kF. Furthermore, the corresponding momentum values belong to the domains
−3kF < k < kF and −kF < k < 3kF for ι′ = ι′′ = 1 and ι′ = ι′′ = −1, respectively, and
−5kF < k < −kF and kF < k < 5kF for ι′ = −ι′′ = 1 and ι′ = −ι′′ = −1, respectively. In the
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Figure 2. Momentum dependence of the exponent (29) along the one-electron-removal c ≡
c0, +1,+1 branch line of figure 1 of [30] for 0 < k < kF. In the figure that exponent is called ζc

and is given by 0 and −3/8 for U/t → 0 and U/t → ∞, respectively. We note that for a small
momentum domain in the vicinity of the branch-line end point k = kF, where vc0(q) ≈ vc0, this
exponent does not apply, since the spectral function is of the form given in equation (16).

m → 0 limit, the exponent ζc0,ι′,ι′′(q) of expression (28) reads

ζc0,ι′,ι′′(q) = −1 +
∑

αν=c0,s1

∑

ι=±1

{
−ιι′

ξ 1
ανc0

2
+ ξ 0

ανs1

2
+ ιι′′

ξ 1
ανs1

2
+ ι�αν,c0(ιq

0
Fαν, q)

}2

= 1 +
∑

ι=±1

[{
−ι

ξ0

2

(
ι′ − ι′′

2

)
+ ι�c0,c0(ι2kF, q)

}2

+
{

1√
2

(
1 + ιι′′

2

)
+ ι�s1,c0(ιkF, q)

}2]
. (29)

For U/t > 0 the exponent ζc0,+1,+1(q) of equation (29) is negative for all values of momentum,
whereas ζc0,−1,−1(q) is also in general negative, except for small values of U/t and a small
domain of bare-momentum values. These exponents are plotted in figures 2 and 3, respectively,
as a function of the momentum k for k > 0, several values of U/t and electronic density
n = 0.59. In these figures these exponents are called ζc and ζc′ , respectively. Correspondingly,
when ζc0,ι′,ι′′ (q) < 0 the weight distribution (28) describes a singular branch line.

In turn, the exponents ζc0,+1,−1 and ζc0,−1,+1 of equation (29) are positive. For the
values of momentum for which these exponents are smaller than one the spectral-function
expression (28) describes edge branch lines. For finite values of U/t the pre-factors
Cc0,±1,∓1(q) have in general smaller values than the pre-factors Cc0,±1,±1(q). Moreover, for
finite values of U/t the pre-factors Cc0,+1,+1(q) and Cc0,−1,−1(q) are decreasing and increasing
functions of k, respectively, whose values are smallest for the domains −3kF < k < −2kF and
2kF < k < 3kF, respectively. Again, in the vicinity of the branch-line end points k = ±kF,
k = ±3kF, and k = ±5kF, where vc0(q) ≈ ±vc0, the spectral function is not of the form (28),
but instead is of the general form given in equation (16).
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Figure 3. Momentum dependence of the exponent (29) along the one-electron-removal charge
c′ ≡ c0, −1,−1 branch line of figure 1 of [30] for 0 < k < 3kF. In the figure that exponent is
called ζc′ and is given by 0 and −3/8 for U/t → 0 and U/t → ∞, respectively. For a small
momentum domain in the vicinity of the branch-line end point k = 3kF, where vc0(q) ≈ vc0, this
exponent does not apply, since the spectral function is of the form given in equation (16).

The exponents plotted in figures 2 and 3 have different values in the limits m → 0,
U/t → 0 and U/t → 0, m → 0. This justifies the different values of these exponents
given for U/t → 0 in figures 2 and 3 and in figure 3 of [30], respectively. However, there are
differences for finite values of U/t as well. Indeed, by an error in the choice of the exponent
expressions, the studies of that reference used an approximation such that one of the U/t-
dependent functions contributing to the exponent expression (29) was replaced by its large-
U/t asymptotic expansion. Therefore, for small and intermediate values of U/t the values
provided here for that exponent are also different from those given in that reference. Our exact
expression (29) and the corresponding figures 2 and 3 replace such an asymptotic expansion.
The main correction to the preliminary results of [30] is that the exponent plotted in figure 3
becomes positive for small values of U/t and a small domain of momentum values in the
vicinity of 3kF.

We finish this section by confirming that the momentum and energy dependence of the
spectral-weight distribution in the vicinity of the corresponding branch lines in the limits
U/t → 0 and U/t → ∞ recovers the correct behaviours. (We recall that in this paper we
reach the limit U/t → 0 by considering the limit U/t → 0, m → 0.) All expressions
provided below are valid for electronic densities n such that 0 < n < 1.

Independently of the general exponent expressions derived by the PDT of [26], we also
used here the method of [20, 21] to derive the exponents associated with the one-electron-
removal spectral function expressions obtained in these references for U/t → ∞. The limiting
values of the exponents obtained here fully agree with those obtained for U/t → ∞ by use of
the method of [20, 21]. Thus, our general U/t expressions are fully consistent with the spectral
function expressions found in these references for U/t → ∞.

Use of the general results of [26] for the one-electron-removal spectral function in the
vicinity of the s1 branch line, which for finite values of U and energy ω is given by
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expression (20), reveals that as U/t → 0 the pre-factor Cs1(q) corresponding to the general
finite-energy expression (10) is replaced by the weight constant of the δ-peak spectral function
given in the second expression of equation (10). The regimen associated with such a weight
constant arises for very low values of U/t , where it is given by (1/Na)

ζ0(q) → 1 [26]. Its
independence of the value of the bare-momentum q results from the behaviour of the functional
ζ0(q), which for this specific branch line is such that ζ0(q) → 0 as U/t → 0 for the whole
corresponding domain of q values. We find that in the limits U/t → 0 and U/t → ∞, the s1
branch-line exponent given in equation (21) reads

ζs1(q) = −1, U/t → 0; ζs1(q) = −1

2
+ 2

(
q

4kF

)2

, U/t → ∞, (30)

for the q and k values of the spectral-function expression (20). In turn, the pre-factor of
the low-energy power-law expression (16) vanishes as U/t → 0. Thus, in that limit the
second expression of equation (10) is valid for the whole branch-line bare-momentum domain
and the regimen associated with the spectral-function expression (16) disappears. Moreover,
according to equation (A2) of [25], in the limit U/t → 0 the dispersion εs1(q) becomes the
electronic spectrum εs1(q) = −2t[cos(q)− cos(kF)]. Consistently, according to equation (30),
the exponent (21) is such that ζs1(q) → −1 as U/t → 0 for all values of q in the range
0 < |q| < kF and thus of the momentum k in the domain 0 < |k| < kF. Then, following the
second expression of equation (20), the correct non-interacting one-electron-removal spectral
function is reached in this limit.

For the one-electron-removal s1, ι′ branch-line expression (24), the multiplicative
coefficient is such that Cs1,ι′(q) → 0 as U/t → 0. Thus, such a branch line does not exist for
U/t → 0, which is the correct result. For m → 0 and in the limits U/t → 0 and U/t → ∞
the corresponding exponent (25) reads

ζs1,ι′(q) = 3, U/t → 0;
ζs1,ι′(q) = 3

2
− ι′

q

kF
+ 2

(
q

4kF

)2

, U/t → ∞,
(31)

for the q and k values of the spectral-function expression (24). In the limit U/t → ∞,
this exponent is such that ζs1,ι′(q) = 5/8 for q → ι′kF, ζs1,ι′(q) = 3/2 for q = 0,
and ζs1,ι′(q) = 21/8 for q → −ι′kF. For the one-electron-removal c0, ι′, ι′′ branch-line
expression (28), the multiplicative coefficient is such that Cc0,ι′,ι′′ (q) → 0 as U/t → 0, which
again is the correct result. In the limit U/t → 0, the c0, ι′, ι′′ branch lines disappear, all
spectral weight being transferred over to the s1 branch line, which becomes the non-interacting
one-electron-removal spectrum. As the limits U/t → 0 and U/t → ∞ are approached, the
exponent (29) tends to the following values:

ζc0,ι′,ι′′(q) = (ι′ − ι′′)2

2
; U/t → 0;

ζc0,ι′,ι′′(q) = − ι′ι′′

2
+ 1

8
; U/t → ∞,

(32)

for the q and k values of the spectral-function expression (28). Thus, in the limit U/t → 0,
it is given by 0 for the branch lines such that ι′ι′′ = 1 and 2 for the branch lines such that
ι′ι′′ = −1. Furthermore, for U/t → ∞ the exponent is given by −3/8 for the branch lines
such that ι′ι′′ = 1 and 5/8 for the branch lines such that ι′ι′′ = −1.

Hence, the one-electron-removal s1 branch line becomes the non-interacting removal
electronic spectrum, which corresponds to −kF < k < kF. In turn, for finite values of U/t
the spectral weight spreads over a larger two-dimensional region of the (k, ω)-plane. However,
most of the spectral weight is located in the vicinity of separated and independent c0 and



Singular features in photoemission of TTF-TCNQ 5209

s1 branch lines and of the weak border line mentioned in section 5. Our study provides the
momentum and energy dependence of the weight distribution in the vicinity of such αν branch
lines. In the m → 0 limit, the maximum spread of the one-electron spectral-weight distribution
occurs for U/t → ∞, where the problem had already been studied in [20, 21]. The U/t → ∞
maximum spreading of the one-electron-removal spectral weight at electronic density n = 1/2
is illustrated in figure 1 of [20] for the spectral function B(k, ω). Our U/t → ∞ expressions
of equations (30) and (32) agree with the results obtained by the method of [20, 21], as
mentioned above.

5. Discussion about the relation to the photoemission dispersions of TTF-TCNQ and
concluding remarks

An interesting realization of a quasi-1D metal is the organic charge-transfer salt TTF-
TCNQ [2–4]. The experimental dispersions in the electron removal spectrum of this quasi-
1D conductor as measured by ARPES are shown in figure 9(b) of [3] and figure 4 of [30].
The experimental data in these figures were taken with He I radiation (21.2 eV) at a
sample temperature of 60 K on a clean surface obtained by in situ cleavage of a single
crystal. Instrumental energy and momentum resolution amounted to 70 meV and 0.07 Å

−1
,

respectively.
We note that the low-energy spectral properties of TTF-TCNQ involve inter-chain hopping

and electron–phonon interactions. Thus, the 1D Hubbard model PDT results are to be
applied above the energies of these processes. The singular branch lines studied in section 4
correspond to the (k, ω)-plane region which contains all the singular features of the one-
electron-removal spectral-weight. In spite of the recent improvements in the resolution of
photoemission experiments [3–5], it is difficult to measure the exponents and the finest details
of the electronic structure experimentally. According to the studies of [37], this is in part due
to the extrinsic losses that occur on very anisotropic conducting solids. In turn, the analysis of
the problem of [38] presents a number of arguments, both theoretical and experimental, that
seem to demonstrate that energy-loss processes occurring once the electron is outside the solid
contribute only weakly to the spectrum, and can in most cases be either neglected or treated as a
weak structureless background. However, independently of the role of the extrinsic losses, it is
difficult to measure the exponents which control the singular features experimentally. Thus, a
crucial test for the suitability of the model (1) to describe real quasi-1D materials is whether the
ARPES peak dispersions correspond to the singular branch lines and other divergent spectral
features predicted by the PDT of [26].

The electronic density of TCNQ is n = 0.59 < 1. For densities in the domain 0 < n < 1
and one-electron removal, the main singular spectral features predicted by the general PDT
are of branch-line type. Thus, for TCNQ the main divergent spectral features correspond to
the singular branch lines studied in section 4. The only other singular feature is quite weak
and corresponds to the lowest line of figure 1 of [30]. In the vicinity of such a border line the
spectral-weight distribution corresponds to the power-law dependence (6), which is controlled
by a U/t-independent exponent. Due to its weakness such a border line does not lead to any
pre-eminent TCNQ spectral feature.

While the theoretical weight-distribution branch-line expressions provided in section 4
refer to all values of U/t and n, a detailed study of the spectral-function k, ω and U/t
dependence in the vicinity of the branch lines obtained in this paper confirms the validity of
the preliminary predictions of [3, 30]: the electron removal spectrum calculated for t = 0.4 eV,
U = 1.96 eV (U/t = 4.90), and n = 0.59 yields an almost perfect agreement with the three
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TCNQ experimental dispersions. The exception is the low-energy behaviour, as a result of the
inter-chain hopping and electron–phonon interactions, as mentioned above. If accounted for a
renormalization of the transfer integral due to a possible surface relaxation [3], these values are
in good agreement with estimates from other experiments [1, 5].

The experimental TCNQ finite-energy peak dispersions of figure 4 of [30] correspond to
the spin s ≡ s1 branch line (18) and charge c ≡ c0,+1,+1 and c′ ≡ c0,−1,−1 branch
lines (26) of figure 1 of that reference. Those are the main finite-weight singular branch lines
in the one-electron-removal spectral function for U/t = 4.90 and n = 0.59. Importantly,
only these main singular features, whose line shape is controlled by negative exponents, lead
to TCNQ peak dispersions in the real experiment. The exponent (21) corresponds to the spin
s ≡ s1 branch line and is plotted in figure 1 for 0 < k < kF. The exponents (29) that
correspond to the charge c ≡ c0,+1,+1 branch line and charge c′ ≡ c0,−1,−1 branch line
are plotted in figures 2 and 3, respectively. As reported in section 4, for finite values of U/t the
value of the constant Cc0,−1,−1(q) of the spectral-function expression (28) strongly decreases
for momentum values such that 2kF < k < 3kF. This is consistent with the absence of TCNQ
experimental spectral features for momentum values k > 0.59π ≈ 0.50 Å

−1
in figure 4 of [30],

along the corresponding c′ ≡ c0,−1,−1 branch line of figure 1 of that reference.
Thus, our detailed branch-line PDT analysis fully agrees with the preliminary theoretical

results of [3, 30] for the TCNQ problem. On the other hand, the theoretical predictions for
the TTF dispersions presented in [30] are very preliminary. For the electronic density value
corresponding to the TCNQ stacks the main singular spectral features are of branch-line type
and the only existing border line is quite weak. In contrast, a careful analysis of the problem
by means of the general PDT reveals that for the electronic density suitable for the TTF stacks
the main singular features are of both branch-line and border-line type. Once the preliminary
studies of TTF presented in [30] involve the singular branch-line features only, a very small
value of U/t is predicted. However, if instead one takes into account all singular features
provided by the PDT, the best quantitative agreement with the TTF experimental dispersions is
reached for larger values of U/t , as confirmed elsewhere.

In this paper we have used the exact PDT of [26] to study the energy and momentum
dependence of the one-electron-removal spectral-weight distribution in the vicinity of the
singular and edge branch lines of the 1D Hubbard model. A careful and detailed analysis
of the spectral function expressions in the proximity of the charge and spin branch lines
obtained here confirms the validity of the preliminary theoretical predictions of [3, 30], in
which the description of the band TCNQ dispersions observed by ARPES in the quasi-1D
organic compound TTF-TCNQ is given. The TCNQ conduction band displays spectroscopic
signatures of spin-charge separation on an energy scale of the band width. This seems
to indicate that the dominant non-perturbative many-electron microscopic processes studied
in [26] by means of the PDT and the associated scattering mechanisms investigated in [28]
control the unusual finite-energy spectral properties of TTF-TCNQ. The quantitative agreement
for the whole finite-energy band width between the theoretically predicted 1D Hubbard
model PDT spectral features and the TCNQ photoemission dispersions of TTF-TCNQ reveals
that for finite energy the local effects of the Coulomb electronic correlations fully control
the spectral properties of that material. Thus, we expect that the long-range Coulomb
interactions, disorder and impurity effects play very little part in the finite-energy and/or
finite-temperature properties of TTF-TCNQ. That disorder and impurities do not play a major
role is confirmed by the occurrence of spin-charge separation for the whole energy band
width. Indeed, the presence of disorder and impurities would prevent the separation of
the one-electron spectral-weight distribution in terms of spin and charge singular spectral
features.
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Our present finite-energy description goes beyond the usual TLL low-energy investigations
by means of bosonization [10] and conformal-field theory [16]. For low energy the present
quantum problem is a TLL. This concept only applies to the parts of the one-electron spectrum
of figure 1 of [30] where the spectral dispersions can be linearized. From analysis of the figure
branch lines one finds that such a regimen corresponds to low energies. However, our results
refer to all values of the group velocities associated with the branch lines plotted in that figure.
Thus, the spin-charge separation found here corresponds to the whole finite-energy band width.
Only our finite-energy theoretical spectral features describe the experimental photoemission
TCNQ dispersions of TTF-TCNQ, once the low-energy phase of TTF-TCNQ is not metallic
and corresponds instead to a broken-symmetry state [2]. It follows that for the present TCNQ
photoemission problem, the 1D physics described by the 1D Hubbard model only becomes
experimentally relevant for finite energy, where the low-energy TLL description does not apply.

A detailed theoretical study of the the TTF experimental dispersions by means of the PDT,
including consideration of both singular branch lines studied here and singular border lines
is in progress and will be presented elsewhere. Moreover, the calculation of the one-electron
spectral function of the 1D Hubbard model for all values of k and ω by use of the general PDT,
which consider all contributing processes, is also in progress.
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